
Git for Teams ofGit for Teams of
One or MoreOne or More

Emma Jane Westby

Twitter: emmajanehw [http://twitter.com/emmajanehw]

emma.westby@drupalize.me
[mailto:emma.westby@drupalize.me]

repo: https://github.com/DrupalizeMe/workflow-git-workshop
[https://github.com/DrupalizeMe/workflow-git-workshop]



Hello! My Name is Hello! My Name is EmmaEmma
[[http://en.wikipedia.orghttp://en.wikipedia.org

/wiki/Emma_Jane_Hogbin/wiki/Emma_Jane_Hogbin]]

 [http://drupalize.me]

I have been using version control for 10+ years and had the great misfortune of teaching CVS to arts majors before
distributed version control was a thing.



Warning!Warning!

This is not a talk about all the commands you can run in Git.

Resources for Commands:Resources for Commands:

video lessons

web UI /
visualization tool

Introduction to Git [http://drupalize.me/series/introduction-
git-series] 
Git Documentation [http://git-scm.com/doc]
Pro Git [http://git-scm.com/book]
ungit [https://github.com/FredrikNoren/ungit] 



More Warning!More Warning!

This talk is kind of about how Joe and I decided to incorporate
rebasing into our workflow.

For the record: I still think rebasing is fundamentally wrong.

And I have the mic.



Final Warning!Final Warning!

Git makes me angry inside. You can 
...if you want.

read why [http://24ways.org
/2013/git-for-grownups/] 

tl;dr: it is arrogant, poorly documented software.



How We NormallyHow We Normally
Teach Tech TopicsTeach Tech Topics

"Here's a list of 23893467 commands!
You should memorize use them!"

We tend to lead with the code. This is not adult education best practices. This is not best practices for adult
education. "Andragogy" tells us adults want information which is relevant to their job, and immediately actionable.
Adult learners are selfish.



My Goal for this PresentationMy Goal for this Presentation

By the end of this session you should be able to:

Determine a permission strategy for your project.
Determine a branching strategy for your project.
Create documentation which outlines how your team members
will use version control.

We are going to examine these three concepts throughout this presentation.



Workflow Solves Hard Problems withWorkflow Solves Hard Problems with
Trivial QuestionsTrivial Questions

Who has permission to commit code?
At what point(s) does the code need to be reviewed and
approved?
How often do you deploy code?



Assumption Alert!Assumption Alert!

Inconsistency leads to mistakes.1.
Anything that is arbitrary must follow a convention.2.
Conventions should be documented.3.
Only tested code is deployed.4.
Faster is better.5.



Workflow =Workflow =
Actions + Locations + PermissionsActions + Locations + Permissions

this is where we want to end up by the end of today. You know where each branch lives. You know how / where a
branch is closed.



Permission StrategiesPermission Strategies

Centralized: everyone works in master from the same disk. Branching how we work. Anyone can check into
master. Forking how most FOSS projects work; also for CI where the testbot gets final approval into master.



PatchingPatching

Everyone has read access. Very few have write access.
Suggested changes are presented as a patch file for review.

Pro: Forces a review process.
Con: Patches need to be rerolled to stay up-to-date.
Example: Drupal



ForkingForking

Project forks give full permissions to developers so they can do
work. New work is added to the main project through a request

to upstream project.

Pro: Forces a review process.
Pro: "Modern" way of doing patches.
Pro: Encourages experimentation (dev controls their own
project clone)
Example: joind.in



BranchingBranching

Pro: Ensures clean/working master (good for CI)
Pro: Encourages experimentation (cheap to branch)
Pro: Reduces overhead of forking workflow
Con: Encourages code review (does not require)
Example: your internal project (probably)



Branching StrategiesBranching Strategies

Scheduled Release: 
or 

Continuous Deployment: 

or 

Hybrid: 

Gitflow [http://nvie.com/posts
/a-successful-git-branching-model/] Simplified Gitflow
[http://drewfradette.ca/a-simpler-successful-git-branching-
model/]

Branch Per Feature
[https://www.acquia.com/blog/pragmatic-guide-branch-
feature-git-branching-strategy] GitHub Flow
[http://scottchacon.com/2011/08/31/github-flow.html]

Squash Workflow [http://reinh.com/blog/2009/03/02
/a-git-workflow-for-agile-teams.html]



Scheduled ReleaseScheduled Release

Incorporates human-reviews, and possibly automated tests.
Allows you to collate many smaller changes into a single
release.



Continuous DeploymentContinuous Deployment

Code is deployed faster than scheduled releases.
Requires (trusted) test coverage.
Typically uses a mechanical gatekeeper to check in code to
the master branch.
Fewer branches to maintain / keep updated.



Example WorklowsExample Worklows

These examples are pulled from Drupalize.Me.
This is a product with no external stakeholders.
YMMV, YOLO, etc.

these are both in the resources for the repository



How We WorkHow We Work

this is the star wars sprintflow. There are more layers for the WP workflow.



Note on NamingNote on Naming

Use terms which resonate with your team (MVP -> LBB).
Giving a descriptive name to projects and processes allows
you to change the meaning by changing the name.
There are a lot of Ewoks.
There are more My Little Ponies.



During the UpgradeDuring the Upgrade

Drupal 6 -> Drupal 7 upgrade
Aiming for speed of code work, not stability.
Changes were not being deployed to the live server.
Total time: 18 months.
Star Wars Sprintflow [../../resources/workflow-sample-
starwars.md]



Post-LaunchPost-Launch

Aiming for stability first, speed second.
We do not have complete test coverage.
Changes are collated weekly onto a QA server, and deployed
from there.
Whispering Pines Weekly Workflow [../../resources/workflow-
sample-whisperingpines-code.md]
Release philosophy [../../resources/workflow-sample-
whisperingpines-releasecycle.md]
Deployment [../../resources/workflow-sample-whisperingpines-
deployment.md]



ResourcesResources

Scheduled Release: 
(

) or

Continuous Deployment: 

or 

Hybrid: 

Managing Chaos: Digital Governance by Design
[http://www.rosenfeldmedia.com/books/web-governance/]
Workflows and Permissions Strategies
[https://www.atlassian.com/git/workflows]

Gitflow [http://nvie.com/posts
/a-successful-git-branching-model/] Cheatsheet
[http://danielkummer.github.io/git-flow-cheatsheet/] 
Simplified Gitflow [http://drewfradette.ca/a-simpler-successful-
git-branching-model/]

Branch Per Feature
[https://www.acquia.com/blog/pragmatic-guide-branch-
feature-git-branching-strategy] GitHub Flow
[http://scottchacon.com/2011/08/31/github-flow.html]

Squash Workflow [http://reinh.com/blog/2009/03/02
/a-git-workflow-for-agile-teams.html]





Thanks!Thanks!
Feedback Welcome!

https://joind.in/10819 [https://joind.in/10819]

// @emmajanehw [http://twitter.com/emmajanehw] @drupalizeme
[http://twitter.com/drupalizeme]

https://github.com/DrupalizeMe/workflow-git-workshop
[https://github.com/DrupalizeMe/workflow-git-workshop]


