
Git for Teams of One or MoreGit for Teams of One or More

Emma Jane Westby

Twitter: emmajanehw
[http://twitter.com/emmajanehw]

slides: https://github.com/emmajane/gitforteams
[https://github.com/emmajane/gitforteams]





Hello! My Name is Hello! My Name is EmmaEmma
[[http://en.wikipedia.org/wiki/Emma_Jane_Hogbinhttp://en.wikipedia.org/wiki/Emma_Jane_Hogbin]]

@emmajanehw

I have been using version control
for 10+ years and had the great
misfortune of teaching CVS to arts
majors before distributed version
control was a thing. This
workshop is being turned into an
O'Reilly book. Yay!





Warning!Warning!

This is not a talk about all the commands you can run in Git.

Resources for Commands:Resources for Commands:

Mega Resources List o' Links
[http://developerworkflow.com/resources/offsite.html]
Git Documentation
[http://git-scm.com/doc]
Pro Git
[http://git-scm.com/book]





Yes, the slides are uploadedYes, the slides are uploaded

github.com/emmajane/gitforteams





On an index card...On an index card...

Write down your answer to:

REQUIRED: What (workflow-related) questions do you need
answered today?
OPTIONAL: How does Emma get in touch with you after the
workshop to make sure your question(s) were answered?

during the break I'm going to
review the index cards to make
sure we're on track.





My Goal for this WorkshopMy Goal for this Workshop

By the end of this session you should be able to:

Choose a permission strategy for your project.
Choose a branching strategy for your project.
Create project-specific documentation which outlines how your
team members interact with your code.





Workshop Outcome:Workshop Outcome:
Personalized DocumentationPersonalized Documentation

this is where we want to end up
by the end of today. You know
where each branch lives. You
know how / where a branch is
closed.





slides:slides:
github.com/emmajane/gitforteamsgithub.com/emmajane/gitforteams

You'll want a copy of the slides for
reference as we go through the
activities. Please open this page
now.





Warm-upWarm-up
ExerciseExercise

People and ProcessPeople and Process
Before Commands and CodeBefore Commands and Code





Basic Questions...Basic Questions...

Who has commit access?
Why do you know your code isn't broken?
Does your team use test-driven development?
Do you have an independent quality assurance team?
Can you deploy "broken" code?

we'll start with the easy questions
you MUST be able to answer. Your
current answers may help you to
uncover problems witn your
current setup.





Activity: Identify Current R&RActivity: Identify Current R&R

Write down a list of all of the people/roles on your code team.1. 
Write a list of the tasks these people/roles are responsible for
code-wise.

2. 

R&R = roles and responsibilities





Activity: Sketch the Assembly LineActivity: Sketch the Assembly Line

Sketch a time line of how code is incorporated into your project.

Where do people grab the code from?
How do people share their work? (branch? patch? fork?)
Is there a review process?
Are there barriers to code commits (test suite, QA team)?

right now, there are no wrong
answers. It's just a sketch. A rough
approximation is fine.





Example: CentralizedExample: Centralized

Everyone works in the same centralized repository. There's no peer
review or testing.





Example: Pre-Merge QA TeamExample: Pre-Merge QA Team

A quality assurance team, and optional test suite, decide if your work
is acceptable.

or this could be just an automated
testbot.





Example: CI or Post-Merge Test SuiteExample: CI or Post-Merge Test Suite

A testbot notifies you if your work is not acceptable (possibly after
adding it to the main branch).

CI assumes everything is good,
but notifies you if it's not.





Part 1Part 1

Project HostingProject Hosting

When you first create a Git project, you will need to decide who can
commit their code to the repository.

Step 1: Identify and describe the
governance for your code.





OverviewOverview

Dispersed Contributor Model - Trust No One; Propose a Solution
Collocated Contributor Repositories - Trust No One; Show Your
Work
Shared Maintenance - Trust the Process





Dispersed Contributor: Trust No One;Dispersed Contributor: Trust No One;
Propose a SolutionPropose a Solution

Everyone has read access. Very few have write access. Suggested
changes are presented as whole ideas in a single patch file for

review.





Dispersed Contributor: Trust No One;Dispersed Contributor: Trust No One;
Propose Propose a Solutiona Solution

Pro Con
Forces a review process.
Works well with git tools (bisect,
gitk).

Sharing work is more
complicated than branching.
Contributors (potentially) need to
setup their own code hosting
platform.

This is what git was optimized for.
It's archaic and doesn't work well
with web-based code hosting and
ticketing platforms such as
GitHub.





Examples ofExamples of
Dispersed Contributors?Dispersed Contributors?

Linux
Drupal
FOSS projects still using a centralized code hosting model OR
mailing-list code sharing model

Linux, Drupal





Collocated Contributor Repositories: Trust No One;Collocated Contributor Repositories: Trust No One;
Show Show Your WorkYour Work

Project forks give full permissions to developers so they can do
work in any commit granularity they choose. New work is added to

the main project through a request to the upstream project via a
proposed branch of commits.





Collocated Contributor Repositories: Trust No One;Collocated Contributor Repositories: Trust No One;
Show Show Your WorkYour Work

Pro Con
Forces a review process. Commit granularity may prevent

effective debugging.
Private repos must be duplicated
per team member.
More steps to incorporate new
work.

This is the default strategy for
public code repositories with
open access for viewing the
project. Wrote a resource on why
this may be bad at
http://developerworkflow.com
/resources/evolution-social-
coding.html





Examples ofExamples of
Collocated Contributor Repositories?Collocated Contributor Repositories?

Django
Ruby on Rails
CakePHP
FOSS projects hosted on GitHub

Django, Rails, CakePHP





Shared Maintenance: Trust the ProcessShared Maintenance: Trust the Process

Developers work in a branch of the centralized code repository.
Only the politics of the project prevent them from committing their

work to the main body of work.





Shared Maintenance: Trust the ProcessShared Maintenance: Trust the Process

Pro Con
Encourages clean/working
master.

Encourages, but does not
require code review.
Must give explicit write
permission to all team members.

This is the default strategy for
private code repositories with
named team members. For BIG
projects, it can be time consuming
to assign permissions to all devs.





Examples ofExamples of
Shared Maintenance?Shared Maintenance?

Internal projects with trusted developers

Internal projects using a
centralized system (e.g. Git, Hg,
bzr) OR centralized systems with
liberal branching.





ReviewReview

Dispersed Contributors - Trust No One; Propose a Solution
Collocated Contributors - Trust No One; Show Your Work
Shared Maintenance - Trust the Process





So What?So What?

If you choose shared maintenance, you need to setup a PRIVATE
repository for your code, and grant permission to all team
members to push their changes to the server.
If you choose collocated repositories, you need to setup PUBLIC
or PRIVATE repository for your code, and ensure all team
members to can create their own PUBLIC or PRIVATE copy of the
project, AND submit merge requests to the main project.





Part 2Part 2

Separating Collated CodeSeparating Collated Code
with Branching Strategieswith Branching Strategies

Identify and describe how your code is collated within your
repository.





Branching StrategiesBranching Strategies

Scheduled Deployment: 

or 

Branch-per-Feature: 

or 

State Branching: 

Gitflow
[http://nvie.com/posts/a-successful-git-branching-model/]

Simplified Gitflow
[http://drewfradette.ca/a-simpler-successful-git-branching-model/]

Branch Per Feature
[https://www.acquia.com/blog/pragmatic-guide-branch-feature-
git-branching-strategy]

GitHub Flow
[http://scottchacon.com/2011/08/31/github-flow.html]

GitLab Flow
[https://about.gitlab.com/2014/09/29/gitlab-flow/]

Scheduled DeploymentScheduled Deployment

Optimized for the collation of many smaller changes into a single
release.
Typically used for a download-able product; or web site with a
scheduled release cycle (e.g. "Wednesdays").
Incorporates human-reviews, and possibly automated tests.

if you have the concept of stable
releases, hotfixes, point releases,
security releases, multiple
supported versions, etc, then you
need this granularity for your
branches. There is always a
period of time where you do not
trust your code/developers and
want to have a separate QA
period. Thinking like a
download-able product: version 4
vs. version 5 of The Software (a
piece of software)





Branch-per-Feature DeploymentBranch-per-Feature Deployment

Code is deployed faster than scheduled releases; assumes all
check-ins are deployable.
Requires (trusted) test coverage.
Typically uses a mechanical gatekeeper (CI) to check in code to
the master branch.
Often has flippers/flags for fine grained access to in-progress
features.
Fewer branches to maintain / keep updated.

if you don't need the granularity of
multiple supported versions, you
can probably get away with
something closer to this branching
strategy. Can you get away with
just tags? Do you intend to go
back and work on a previous
version? As soon as you have the
concept of a separate security
hotfix, you need to introduce a
separate branch. In CD:
everything is urgent, so there's not
a separation of a really urgent
security fix. CI, CD vs CD:
http://puppetlabs.com
/blog/continuous-delivery-
vs-continuous-deployment-
whats-diff





ActivityActivity

Which best describes your current setup?

Scheduled Deployment: 

or 

Branch-per-Feature: 

or 

State Branching: 

Gitflow
[http://nvie.com/posts/a-successful-git-branching-model/]

Simplified Gitflow
[http://drewfradette.ca/a-simpler-successful-git-branching-model/]

Branch Per Feature
[https://www.acquia.com/blog/pragmatic-guide-branch-feature-
git-branching-strategy]

GitHub Flow
[http://scottchacon.com/2011/08/31/github-flow.html]

GitLab Flow
[https://about.gitlab.com/2014/09/29/gitlab-flow/]

On the sketch diagram you created previously, add a CIRCLE (or a
triangle, or a pony) around the collation points for code. These

represent new branches. Where possible, REDUCE the number of
collation points because merging out-of-date branches is a potential

pain point.





So What?So What?

If you choose SCHEDULED DEPLOYMENT, streamline how your
code is collated for release.
If you choose BRANCH-PER-FEATURE, codify how trust is
deployed in your code.
If you choose STATE BRANCHING, establish your infrastructure
and automate where possible.





Part 3Part 3

Commit GranularityCommit Granularity

The Great Rebase Debate





super nerdy rant alert!super nerdy rant alert!

Evolution of Social Coding
[http://developerworkflow.com/resources/evolution-social-

coding.html]





What is a CommitWhat is a Commit

A record of the changes to the repository.

let's start with the very, very
basics. A commit is a record of
change.





How can we use CommitsHow can we use Commits

log
gitk
blame
bisect

We use commits when we look at
our project's history. We also use
commits to debug our code with
"advanced" tools, such as bisect.





Sharing Work: A brief history lessonSharing Work: A brief history lesson

The patch workflow and git am.

The commit message is formed by the title
taken from the "Subject: ", a blank line and the
body of the message up to where the patch

begins.

In other words: a commit is a whole idea.

the Linux kernel developers
chose to use a patching workflow
and created command line tools
to support this branching strategy.





Sharing Work: TodaySharing Work: Today

git push

Shares an entire branch, with all your micro commits.





Compare: bzrCompare: bzr
branches are collapsed by default;
there is a sane commit message
when the branch is merged into
master (unlike git which gives you
a default "merged!" message)





Problem!Problem!

Git tools are COMMIT-aware, not BRANCH-aware.

gitk
bisect





Solution!Solution!

git rebase

Forward-port local commits to the updated
upstream head

In English: re-draw the graph for the commit history as if the rebased
commits were already in the history when you did your work.





Solution!Solution!

git rebase -i

Make a list of the commits which are about to
be rebased. Let the user edit that list before

rebasing. This mode can also be used to split
commits (see SPLITTING COMMITS below).

In English: combine, or separate, any commits previously made.





Yes, Re-write HistoryYes, Re-write History

Because the tools used to interpret history are crude, the
recommended approach is simply to fix history.

TWITCH

But this is how Git works. So there you go.





/rant/rant

Evolution of Social Coding
[http://developerworkflow.com/resources/evolution-social-

coding.html]





So What?So What?

Discuss with your team how they want to find bugs,
and therefore HOW your commits should be recorded.

are you social coding? Or are you
using git as it was designed to
work with the command line tools
it ships with?





Part 4Part 4

Putting it all TogetherPutting it all Together

These examples are pulled from Drupalize.Me when I was
working as their PM and sometimes front end dev.
This is a product with no external stakeholders.
YMMV, YOLO, etc.

these are both in the resources
for the repository





Project HighlightsProject Highlights

Drupal 6 -> Drupal 7 upgrade
Aiming for speed of work, not stability.
Changes were not being deployed to the live server.
No weekly demos (which you might have for client work).
Total time: 18 months.
Star Wars Sprintflow
[../../resources/workflow-sample-starwars.md]





Some Notes on NamingSome Notes on Naming

Use terms which resonate with your team (MVP -> LBB).
Giving a descriptive name to projects and processes allows you
to change the meaning by changing the name.
There are a lot of Ewoks.
There are more My Little Ponies.





The Star Wars WorkflowThe Star Wars Workflow
pre-launch: peer review with
branched permission strategy;
separate QA server where work is
available for review, but typically
devs just look at their local version
of the current dev branch.





Whispering Pines WorkflowWhispering Pines Workflow

Aiming for stability first, speed second.
Some test coverage.
Changes are collated weekly onto a QA server, and deployed
from there.





Whispering Pines WorkflowWhispering Pines Workflow
DocumentationDocumentation

github.com/emmajane/gitforteams

Whispering Pines Weekly Workflow
[../../resources/workflow-sample-whisperingpines-code.md]
Release philosophy
[../../resources/workflow-sample-whisperingpines-
releasecycle.md]
Deployment
[../../resources/workflow-sample-whisperingpines-
deployment.md]





Penultiate Activity: Sketch Your WorkflowPenultiate Activity: Sketch Your Workflow

Restructure your previous diagrams to include the intrastate
where code is collated.
Add arrows to represent the direction code travels.
To the arrows, add the git commands which you'd use.
Create a written narrative which describes the EXACT commands
people should use to move code through the process. (See
previous slide for examples.)





Last ThingLast Thing

Index Card Online
What did you learn?
What is (still) confusing?
What will you change for your
project?

Give us your feedback.
http://www.oscon.com/open-
source-2015/public/schedule
/detail/40461
[http://www.oscon.com/open-
source-2015/public/schedule
/detail/40461]





ResourcesResources

Git for Teams
[http://www.gitforteams.com/]





Thanks!Thanks!

Let's stay in touch!

@emmajanehw
[http://twitter.com/emmajanehw]

emma@emmajane.net

https://github.com/emmajane/gitforteams
[https://github.com/emmajane/gitforteams]




